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Tricritical behavior in the Sherrington-Kirkpatrick spin glass under a bimodal random field
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The infinite-range-interaction Ising spin glass, in the presence of an external random field, is investigated
through the replica method. At each site, the field follows a bimodal distribution, assuming the values6h0 .
Within the replica-symmetry approximation, the phase diagram is obtained for different values ofh0 . The
border of the ferromagnetic phase displays interesting behavior, depending on the value ofh0 , with two
threshold values~h0

(1) and h0
(2)!: ~i! a continuous line, forh0,h0

(1) ; ~ii ! two pieces, one continuous~high
temperatures! and another of the first-order type~low temperatures!, connected at a tricritical point, forh0

.h0
(2) ; and~iii ! two continuous pieces~high and low temperatures! and a first-order part in between, with two

tricritical points, forh0
(1)<h0<h0

(2) . The stability of the replica-symmetric solution is analyzed. It is shown
that the higher-temperature tricritical point is always in a stable region of the phase diagram, whereas the
lower-temperature one is, most of the time, inside the unstable region. Along the first-order critical line, a small
gap is found between the borders associated with the instabilities of the replica-symmetric solution from either
side of the phase-coexistence region, i.e., these instability lines do not meet at the ferromagnetic frontier, as
usually happens in the case of second-order phase transitions.@S1063-651X~98!07705-8#

PACS number~s!: 05.50.1q, 64.60.2i, 75.10.Nr, 75.50.Lk
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I. INTRODUCTION

Disordered magnets@1# have become one of the most e
citing areas in magnetism from both theoretical and exp
mental points of view. Among many interesting systems, t
of them may be singled out as sources of remarkable con
versies, namely, spin glasses@2,3# and the ferromagnet in th
presence of a random field@3,4#.

Most of the spin-glass theory has been concentrated a
mean-field level, based on infinite-range-interaction mod
whose prototype is formulated for the Ising spin glass~ISG!,
the so-called Sherrington-Kirkpatrick~SK! model @5#. The
solution of the SK model presents unusual properties, s
as the Almeida-Thouless~AT! line @6#, which, in the pres-
ence of an external uniform magnetic field, separates a h
temperature region where the spin-glass order paramet
unique from a low-temperature one, defined in terms of
infinite number of order parameters, i.e., an order-param
function @7#. Within the replica-method@2# terminology, the
phase characterized by a single parameter is said to fo
replica symmetry, whereas at low temperatures the insta
ity of replica symmetry is corrected by the introduction
Parisi’s order-parameter function, a procedure that is usu
denominated replica symmetry breaking~RSB!. Such an
order-parameter function is directly related to a multiplic
of equilibrium states at low temperatures, which are or
nized in a hierarchical structure, defining an ultramet
space @8#. Concerning short-range-interaction systems,
early controversy referred to the lower critical dimensiondl
of the ISG. This question is by now completely settled, w
numerical simulations@9#, high-temperature series expa
sions @10#, and renormalization-group methods@11,12# all
571063-651X/98/57~5!/5079~8!/$15.00
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agreeing that 2,dl,3 in such a way that there is a pha
transition in three dimensions, but not in two. Whether R
survives in real short-range spin glasses has turned in
polemic, not yet resolved@13#. The rival theory is the drople
model@14#, based on domain-wall renormalization-group a
guments for spin glasses@12,15#. Contrary to RSB, the drop
let model describes the low-temperature phase of any sh
range finite-dimensionalspin glass in terms of a singl
thermodynamic state~together, of course, with its corre
sponding time reverse!. The droplet model goes through di
ficulties as the dimensionality increases, since one exp
the existence of a finite upper critical dimension~believed to
be 6 for the ISG@16#! above which the mean-field pictur
should become valid. It is very difficult to carry out numer
cal simulations in dimension 3, which is presumably close
the lower critical dimension, due to thermalization difficu
ties; as a consequence, no conclusive results concerning
controvery in three-dimensional systems are available. H
ever, in four dimensions the critical temperature is mu
higher, making thermalization easier; many works claim
have observed some mean-field features in this case@17#.

The random-field Ising model~RFIM!, as introduced by
Imry and Ma @18#, has concentrated much attention on t
revelation of its physical realization as a diluted Ising an
ferromagnet in the presence of a uniform magnetic field@19#
and that the static critical properties in these two syste
may be the same@20#. Simple physical arguments due t
Imry and Ma suggested that the lower critical dimension
the RFIM, above which there exists a stable ferromagn
state at low temperatures, should bedl52; although that
point remained controversial for some time, rigorous resu
@21# showed that the assertion is indeed true. According to
5079 © 1998 The American Physical Society
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5080 57NOGUEIRA, NOBRE, da COSTA, AND COUTINHO
mean-field theory, the nature of the phase transition depe
on the distribution associated with the magnetic field. In
Gaussian case, the phase transition is always continu
@22#, whereas for a symmetric bimodal distribution~for
which the field assumes the values6h0 with equal probabili-
ties!, the phase transition is continuous forh0 small and high
temperatures, becoming first order for sufficiently large v
ues ofh0 and low temperatures@23#. In the latter case, the
critical frontier presents a tricritical point connecting th
continuous and first-order pieces. Analogous to what h
pens for spin glasses, the free-energy landscape at low
peratures may be complicated, with some perturbative an
sis, suggesting that the ordered phase may present RS
finite-dimensional systems@24#. That makes the situation in
the short-range RFIM rather subtle, e.g., the numerical si
lations suffer from thermalization problems, in such a w
that conclusive results about the nature of the phase tra
tion become difficult to obtain. For the three-dimension
RFIM, recent Monte Carlo simulations detect a jump in t
magnetization but no latent heat for both bimodal@25# and
Gaussian@26# distributions, whereas high-temperature ser
expansions@27# and a zero-temperature scaling analysis@28#
find a continuous transition for both distributions. Howev
in four dimensions the same zero-temperature analysis@28#
leads to a first-order phase transition in the bimodal case
a continuous one for a Gaussian distribution, in agreem
with the mean-field predictions.

Although they may present common properties, parti
larly at large random fields, the ISG and RFIM have be
treated, most of the time, separately; a few works have c
sidered the two systems together@29,30#. However, many
systems in nature are properly described through a spin g
in the presence of a random magnetic field. As examples
may mention the proton and deuteron glasses@30#, which are
mixtures of hydrogen-bonded ferroelectric and antiferroel
trics, considered as the electric counterparts of spin glas
On the other hand, many diluted antiferromagnets, wh
prototype is FexZn12xF2, due to large crystal-field anisotro
pies, when submitted to an external uniform magnetic fi
become good experimental realizations of the RFIM@31# for
large enough values of the concentrationx; as x decreases
they behave like Ising spin glasses. In the FexZn12xF2 case,
for x>0.40 one gets a RFIM, whereas forx<0.24 it be-
comes an ISG. However, for intermediate concentrati
(0.24<x<0.40) one may have both behaviors@RFIM ~ISG!
for small ~large! magnetic fields#, with a crossover betwee
them; that is clearly observed in measurements
Fe0.31Zn0.69F2 @32#. Obviously, such systems are expected
be properly described through a model that is capable
presenting both spin-glass and random-field characteris
the SK model under a Gaussian random field@29# was able
to present the crossover observed in Fe0.31Zn0.69F2.

In this paper we study the SK model in the presence o
bimodal random field; we show that this system presen
first-order phase transition, depending on the magnitude
the random field. This model should be relevant for the
scription of diluted antiferromagnets exhibiting first-ord
phase transitions such as FexMg12xCl2 @31#. In the next sec-
tion we define the model and, using the replica method,
its free-energy density and equations of state. In Sec. III
ds
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exhibit and discuss the phase diagrams. Finally, in Sec.
we present our conclusions.

II. THE MODEL AND REPLICA FORMALISM

The SK model in the presence of an external rand
magnetic field is defined in terms of the Hamiltonian@29#

H52(
~ i , j !

Ji j SiSj2(
i

hiSi , ~2.1!

whereSi561, with i 51,2, . . . ,N, and the interactions are
infinite-range-like, i.e., the sum( i , j applies to all distinct
pairs of spins. The coupling constants$Ji j % and the random
fields $hi% are quenched variables, following independe
probability distributions

P~Ji j !5S N

2pJ2D 1/2

expF2
N

2J2 S Ji j 2
J0

N D 2G , ~2.2!

P~hi !5pd~hi2h0!1~12p!d~hi1h0!. ~2.3!

For a given realization of bonds and site fields ($Ji j %,$hi%),
one has a corresponding free energyF($Ji j %,$hi%) such that
the average over the disorder@ #J,h may be performed as
independent integrals

@F~$Ji j %,$hi%!#J,h

5E )
~ i , j !

@dJi j P~Ji j !#)
i

@dhi P~hi !#F~$Ji j %,$hi%!.

~2.4!

The usual procedure consists in applying the repl
method@2# in order to get the free energy per spin as

2b f 5 lim
N→`

1

N
@ ln Z~$Ji j %,$hi%!#J,h

5 lim
N→`

lim
n→0

1

Nn
~@Zn#J,h21!, ~2.5!

whereZn is the partition function ofn copies of the system
defined in Eq.~2.1! and b51/T ~we work in unitskB51!.
Standard calculations lead to

b f 52
~bJ!2

4
1 lim

n→0

1

n
min g~ma,qab!, ~2.6!

where

g~ma,qab!5
bJ0

2 (
a

~ma!21
~bJ!2

2 (
~a,b!

~qab!2

2p ln Tra exp~Heff
1 !

2~12p!ln Tra exp~Heff
2 !, ~2.7a!

Heff
6 5bJ0(

a
maSa1~bJ!2 (

~a,b!
qabSaSb6bh0(

a
Sa.

~2.7b!
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57 5081TRICRITICAL BEHAVIOR IN THE SHERRINGTON- . . .
In the equations above, the sum indicesa and b (a,b
51,2, . . . ,n) are replica labels and( (a,b) denote sums ove
distinct pairs of replicas.

The extrema of the functionalg(ma,qab) give us the
equilibrium equations for the magnetization and spin-gl
order parameters, respectively,

ma5p^Sa&11~12p!^Sa&2 , ~2.8a!

qab5p^SaSb&11~12p!^SaSb&2 , ~aÞb!,
~2.8b!

where^ &6 refer to thermal averages with respect to the ‘‘e
fective Hamiltonians’’Heff

6 in Eq. ~2.7b!.
If one assumes the replica-symmetry~RS! ansatz@5#

ma5m ;a,

qab5q ;~ab!, ~2.9!

the free energy per spin@Eq. ~2.6!# and the equilibrium con-
ditions @Eqs.~2.8!# become

b f 52
~bJ!2

4
~12q!21

bJ0

2
m2,

2pE Dz ln~2 coshj1!

2~12p!E Dz ln~2 coshj2!, ~2.10!

m5pE Dz tanhj11~12p!E Dz tanhj2, ~2.11!

q5pE Dz tanh2 j11~12p!E Dz tanh2 j2,

~2.12!

where

E Dz¯5E
2`

` S 1

2p D 1/2

dz exp~2z2/2!¯ ~2.13!

and

j65bJ0m1bJq1/2z6bh0 . ~2.14!

Although the spin-glass order parameter@Eq. ~2.12!# is al-
ways induced by the random field, it may still contribute to
nontrivial behavior. The RS solution@Eq. ~2.9!# becomes un-
stable below the Almeida-Thouless@6# line,

S T

J D 2

5pE Dz sech4 j11~12p!E Dz sech4 j2.

~2.15!

If J050 the integrals involvingj2 in ~2.12! and ~2.15!
may be easily transformed through the change of varia
z→2z in such a way that the AT line is obtained by solvin
the equations

S T

J D 2

5E Dz sech4~bJq1/2z1bh0!, ~2.16a!
s

s

q5E Dz tanh2~bJq1/2z1bh0!, ~2.16b!

which are identical to those of the SK model in the prese
of a uniform magnetic field@6#. Therefore, the AT line in the
plane magnetic field versus temperature is independentp
and trivially analogous to the one forp51; such a line is
invariant under reversal of the field. Hence, in the pres
problem,J050 does not lead to any novel behavior.

For J0Þ0 there is an AT line for any value ofp, given by
the solution of Eqs.~2.11!, ~2.12!, and ~2.15!. At low tem-
peraturesJ0@J andJ0@h0 , this line is given by

T

J
>

4

3

1

A2p
H p expF2

~J01h0!2

2J2 G
1~12p!expF2

~J02h0!2

2J2 G J . ~2.17!

In the next section we shall consider the phase diagrams
p5 1

2 , J0>0, and different values ofh0 .

III. PHASE DIAGRAMS

As far as replica symmetry is concerned, the casespÞ 1
2

are trivial since both magnetization and spin-glass para
eters are nonzero; let us restrict ourselves now top5 1

2 . In
this case the random field induces the parameterq in such a
way that there is no spontaneous spin-glass order, like
one found in the SK model, whereas one may still hav
phase transition associated with the magnetization. Th
fore, analogous to the RFIM, two phases are possi
namely, the ferromagnetic~mÞ0, qÞ0! and the independen
~m50, qÞ0! ones. In the RFIM this latter phase is usua
denominated paramagnetic; for the present problem, wi
the RS approximation, we shall keep the nomenclature in
pendent, for reasons that will become clear soon.

The critical frontier separating these two phases may
found by solving the equilibrium equations~2.11! and~2.12!;
in the case of first-order phase transitions, we shall make
of the free-energy per spin@Eq. ~2.10!# as well. Let us then
expand Eq.~2.11! in powers ofm,

m5A1~q!m1A3~q!m31A5~q!m51O~m7!, ~3.1!

where the coefficients are given by

A1~q!5bJ0@12r1~q!#, ~3.2a!

A3~q!52
~bJ0!3

3
@124r1~q!13r2~q!#, ~3.2b!

A5~q!5
~bJ0!5

15
@2217r1~q!130r2~q!215r3~q!#,

~3.2c!

with

rk~q!5E Dz tanh2k~bJq1/2z1bh0!. ~3.3!
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FIG. 1. Typical phase diagrams of the Sherrington-Kirkpatrick model in the presence of a symmetric bimodal random field of ma
h0 . For the border of the ferromagnetic phase, full lines represent continuous transitions, whereas the dashed ones stand for first-o
transitions. The black circles along such a border represent points where the coefficientA38 @see Eq.~3.6b! # is zero. The ferromagnetic
critical frontier changes qualitatively for increasing values ofh0 : ~a! completely continuous;~b! continuous, except for the appearance o
singularity (A3850); ~c! two tricritical points; and~d! one of the tricritical points collapses with the zero-temperature axis. The lines AT1
AT2 define the regions of instability of the replica-symmetric solution.
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The coefficients in Eqs.~3.2! depend onq @which depends
on m through Eq.~2.12!#; expanding Eq.~2.12! in powers of
m,

q5q01
~bJ0!2

2

G

12~bJ!2G
m21O~m4!, ~3.4!

with

G5124r1~q0!13r2~q0!, ~3.5!

whereq0 corresponds to the solution of Eq.~2.12! for m50.
Substituting Eq. ~3.4! into Eq. ~3.1!, one gets the
m-independent coefficients of the power expansion; we w
be particularly interested in the lowest-order ones

A185A1~q0!, ~3.6a!
ll

A3852
~bJ0!3

6 F52~bJ!2G

12~bJ!2GGG. ~3.6b!

The critical frontier was determined using standard pro
dures, as described below.

~i! For continuous phase transitionsA1851 andA38,0; a
typical case is shown in Fig. 1~a!.

~ii ! A first-order phase transition occurs wheneverA18
51 andA38.0; the proper critical frontier was found in thi
case through a Maxwell construction, i.e., by equating
free energies of the two phases. Typical cases are exhib
in Figs. 1~c!, 1~d! and 2~dashed lines!.

~iii ! When both types of phase transitions are present,
continuous and first-order critical frontiers meet at a tricr
cal point@33#, which defines the limit of validity of the serie
expansions; beyond the tricritical point the magnetization
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57 5083TRICRITICAL BEHAVIOR IN THE SHERRINGTON- . . .
discontinuous. The location of such a point is determined
settingA185A3850, with the conditionA58,0 satisfied.

The present problem reveals a curious behavior. Fo
small range of field magnitudes, the coefficientA38 changes
sign twice: It is negative at high, becomes positive for int
mediate, and negative again at low temperatures. In su
case, the critical frontier is composed of two continuo
pieces~computed throughA1851!, interpolated by a first-
order part~computed by equating the free energies! defining
two tricritical points; this occurs forh0 /J&1, as shown in
Fig. 1~c!.

The finite-temperature phase diagrams of the SK mode
the presence of a symmetric bimodal random field are ex
ited in Figs. 1 and 2 for increasing values ofh0 . One notices
that the part of the phase diagram allocated to the ferrom
netic phase gets reduced ash0 increases. One finds tw
threshold values ofh0 ~h0

(1) andh0
(2)!, at which the ferromag-

netic critical frontier changes qualitatively. Forh0,h0
(1) , the

frontier is continuous. Two tricritical points are present
the rangeh0

(1)<h0<h0
(2) ; these points move in opposit

senses in the temperature scale, for increasing values oh0 ,
in such a way that the lower-temperature one collapses
the zero-temperature axis forh05h0

(2) @see Fig. 1~d!#. For
h0.h0

(2) there is a single tricritical point at finite temper
tures. We have found numerically thath0

(1)'0.9573J; at this
value, the coefficientA38 is negative along the whole critica
frontier, becoming zero forT* '0.3582J andJ0* '1.9804J,
corresponding to a singularity~the two tricritical points are
superposed!, as represented by the black circle in Fig. 1~b!.
The second threshold value was found analytically,h0

(2)

5J, through a zero-temperature analysis, which will be d
cussed next.

FIG. 2. Phase diagram of the Sherrington-Kirkpatrick mode
the presence of a symmetric bimodal random field of magnit
h051.5J. The phases and lines follow the same nomenclature u
in Fig. 1. The inset is an amplification of the low-temperature re
angular region withT/J50.0→0.4 andJ0 /J52.5→4.0. The gray
region in the inset represents the phase coexistence, characteris
the first-order critical frontier. The line AT1 is valid up to the righ
end limit of the phase coexistence, whereas AT2 is valid up to
left end limit of this region. Therefore, AT1 and AT2 do not meet
the ferromagnetic critical frontier.
y
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We investigated how the above-mentioned critical front
evolves along the zero-temperature axis; atT50 the spin-
glass order parameter is trivial (q51), whereas the free en
ergy and magnetization become, respectively,

f 52
J0

2
m22

h0

2 FerfS J0m1h0

J&
D 2erfS J0m2h0

J&
D G

2
J

A2p
H expF2

~J0m1h0!2

2J2 G1expF2
~J0m2h0!2

2J2 G J ,

~3.7a!

m5
1

2
erfS J0m1h0

J&
D 1

1

2
erfS J0m2h0

J&
D . ~3.7b!

Using a similar procedure as the one for finite temperatu
one may expand Eq.~3.7b!,

m5a1m1a3m31a5m51O~m7!, ~3.8!

where

a15A2

p

J0

J
expS 2

h0
2

2J2D , ~3.9a!

a35
1

6
A2

p S J0

J D 3S h0
2

J221DexpS 2
h0

2

2J2D , ~3.9b!

a55
1

120
A2

p S J0

J D 5S h0
4

J426
h0

2

J2 13DexpS 2
h0

2

2J2D .

~3.9c!

For h0 /J,1 one gets a continuous critical frontier given b

J0

J
5Ap

2
expS h0

2

2J2D , ~3.10!

which terminates at the tricritical point

h0

J
51,

J0

J
5Ape

2
'2.0664. ~3.11!

This tricritical point corresponds to the zero-temperature c
lapse shown in Fig. 1~d!; one may easily see that the cond
tion a5,0 is satisfied by the coordinates~3.11!. Beyond the
tricritical point (h0 /J.1), the transition becomes first orde
the corresponding critical frontier may be obtained nume
cally from Eq. ~3.7a! by imposing f (mÞ0)5 f (m50), al-
though in the limitJ0 /J,h0 /J@1 one has the analytical re
sult that it should approach the asymptoteJ05h0 . The zero-
temperature phase diagram is exhibited in Fig. 3.

As mentioned before, the parameterq may still contribute
to a nontrivial behavior; this effect is directly related to
stability analysis of the RS solution@6#. Usually two criteria
are employed for the identification of a spin-glass phase
infinite-range-interaction models, as we mention below.

~a! Within the RS approximation, the parameterq may
become nonzero below a certain temperature, signaling
onset of a spin-glass phase.
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~b! The AT stability analysis normally splits phase di
grams into regions throughout which the RS solution is
ther stable or unstable. The instability of replica symmetry
usually cured by the introduction of an order-parameter fu
tion, a procedure known as replica symmetry breaking@7#. It
is very common to associate a spin-glass state with RSB

Normally, for systems where the RS parameterq becomes
nonzero, as mentioned in~a!, the AT instability occurs to-
gether; in such cases, criteria~a! and ~b! coincide in the
identification of the spin-glass phase, as happens for the
model in the absence of a field. However, due to exter
parameters, a given system may present an induced s
glass order parameter and an AT-like instability. In this ca
the AT line defines two regions in the phase diagram a
criterion ~b! is employed: In one of them, the spin-glass o
der parameter is trivially induced and obeys RS~this region
is normally denominated a paramagnetic phase!; throughout
the other one, the spin-glass order parameter is highly n
trivial, defined according to a RSB procedure~this region is
usually called a spin-glass phase!. As an example of this
case, one may mention the SK model in the presence o
external magnetic field.

In the present problem, the AT stability analysis may
carried either to the independent phase (m50) or to the
ferromagnetic (mÞ0) one. In the former case, the AT line
given by the solution of Eqs.~2.16! and due to itsJ0 inde-
pendence, one gets horizontal straight lines~AT1!, as shown
in Figs. 1~a!–1~d! and 2. In the latter, the AT line is obtaine
by solving Eqs.~2.11!, ~2.12!, and ~2.15! for p5 1

2 ; in the
low-temperature regime one gets the exponential decay
Eq. ~2.17!, whereas for intermediate temperatures, su
equations are solved numerically. The AT lines inside
ferromagnetic region~AT2! are exhibited in Figs. 1~a!–1~d!
and 2.

Herein we shall adopt criterion~b! described above fo
the identification of the paramagnetic and spin-glass pha
in a similar way, the ferromagnetic phase will be split in tw
parts. The phases exhibited in Figs. 1–3 are identified
paramagnetic~P! ~m50; q: RS!, spin-glass~SG! ~m50;

FIG. 3. Zero-temperature phase diagram of the Sherring
Kirkpatrick model in the presence of a symmetric bimodal rand
field.
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q: RSB!, ferromagnetic~F! ~mÞ0; q: RS!, and mixed
ferromagnetic (F8) ~mÞ0; q: RSB!.

For smaller values ofh0 @e.g., Fig. 1~a!#, one clearly no-
tices the effect usually denoted ‘‘reentrance:’’ By lowerin
the temperature in the neighborhood of the ferromagn
border, one comes from a highly disordered phase~P! to
ordered phases~F and F8! and then to a less-ordered sta
~SG!. This effect is attenuated for increasing values ofh0 ,
similarly to what happens for the SK model in the presen
of a Gaussian random field by increasing its distributi
width @29#.

Below the Almeida-Thouless lines~AT1 and AT2!, the
RS solution is unstable and a RSB formalism is requir
certainly, some changes may occur in a more general typ
solution, as we discuss below.

~i! The frontier between theSG andF8 phases is expecte
to become a vertical straight line~i.e., no reentrance!, in
analogy to what happens for the SK model, according to
Parisi-Toulouse hypothesis@34#. RSB may eliminate the re
entrance effects for small values ofh0 ~continuous phase
transition!; on the other hand, a RSB study of this critic
frontier in the case of a first-order phase transition is a di
cult task. However, we expect that the shape of the ferrom
netic border forh0 /J greater than or of the order of unit
@Figs. 1~b!–1~d! and 2# will not change substantially. Fo
such reasons, the zero-temperature phase diagram exhi
in Fig. 3 will presumably be modified forh0 small, but its
discrepancies should decrease for increasing values ofh0 .

~ii ! The low-temperature tricritical point forh0
(1)<h0

<h0
(2) is, most of the time, inside the unstable region@e.g.,

Fig. 1~c!#. Whether this tricritical point is an artifact of RS i
a question that deserves further investigation.

In the case of continuous phase transitions, the two
lines ~AT1 and AT2! meet at a multicritical point, in the
ferromagnetic border, as shown in Figs. 1~a! and 1~b!. How-
ever, due to the phase-coexistence region in the case of
order phase transitions, the line AT1~AT2! goes as far as the
right ~left! end limit of the phase coexistence, as exhibited
the gray region in the inset of Fig. 2; as a consequence
this, these linesdo not meetat a point of the ferromagnetic
border. Since an AT line signals the instability of the R
solution and does not correspond to a genuine phase tra
tion, we are not aware of any kind of ‘‘Maxwell construc
tion’’ that could be used in this case. Therefore, the lin
AT1 and AT2 herein exhibited merely represent the so
tions of Eqs.~2.11!, ~2.12!, and~2.15! for p5 1

2 .
The RS treatment is appropriate in the region of stabi

of such solution; hence the border of the ferromagnetic ph
for temperatures above the lines AT1 and AT2 will n
change under a RSB formalism. In particular, the high
temperature tricritical point, together with a part of the firs
order critical frontier, will persist in more general treatmen
this tricritical point is probably reminiscent of the one foun
in the bimodal RFIM@23#.

IV. CONCLUSION

We have studied the Sherrington-Kirkpatrick spin glass
the presence of a bimodal random field, which can assu
the values6h0 at each site. We have analyzed the pha
diagram for the case of a symmetric field distribution, with

n-
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the replica-symmetry approximation, for which, the sp
glass parameter is always induced by the field, whereas
magnetization becomes nonzero, defining a ferromagn
phase. By increasingh0 we have verified that the part of th
phase diagram allocated to the ferromagnetic phase
creases; in addition to that, we have found two thresh
values ~h0

(1) and h0
(2)! at which the ferromagnetic critica

frontier changes qualitatively: It is completely continuous
h0,h0

(1) and presents two tricritical points forh0
(1)<h0

<h0
(2) or a single tricritical point forh0.h0

(2) . By increasing
h0 in the rangeh0

(1)<h0<h0
(2) , we have noticed that the

temperatures corresponding to the two tricritical poi
evolve in opposite senses, i.e., one point moves up, whe
the other one goes down in the temperature scale, in su
way that forh05h0

(2) the lower-temperature tricritical poin
collapses with the zero-temperature axis.

We have shown that although the spin-glass paramet
always nonzero, it may lead to a nontrivial behavior; t
stability analysis of the replica-symmetric solution identifi
regions throughout which such a solution becomes unsta
Due to this stability analysis, the phase diagram appear
be composed of four phases: two with zero magnetiza
@paramagnetic~spin glass!# and two with nonzero magneti
zation @ferromagnetic ~mixed ferromagnetic!#, defined in
terms of a trivial~nontrivial!, i.e., RS~RSB! spin-glass order
parameter.

We have found that the higher-temperature tricritic
point is always in the region of stability of replica symmet
,
r
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,

-
he
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e-
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r

s
as
a

is

le.
to
n

l

and should not change under a more general solution;
point is probably reminiscent of the one found for the bim
dal RFIM. On the other hand, the lower-temperature tricr
cal point is, most of the time, inside the unstable region a
its existence may be an artifact of the replica-symmetry
satz.

Due to the first-order phase transition, the limits of stab
ity of the replica-symmetric solution, from either side of th
phase-coexistence region, do not meet at the ferromagn
border, as usually happens for continuous phase transiti

Which features of the present mean-field picture will p
dominate in a short-range Ising spin glass in the presenc
a bimodal random field turns out to be a question direc
related to the survival of mean-field characteristics in
respective short-range versions of the Ising spin glass
random-field model, treated separately. We are not awar
any experimental observations of the results herein repor
However, the diluted antiferromagnet FexMg12xCl2 seems to
be a good candidate since it has presented evidence
first-order phase transition@31#; we believe that, for conve-
niently chosen concentrations, some of the above results
be observed.
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