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Tricritical behavior in the Sherrington-Kirkpatrick spin glass under a bimodal random field
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The infinite-range-interaction Ising spin glass, in the presence of an external random field, is investigated
through the replica method. At each site, the field follows a bimodal distribution, assuming the wdiges
Within the replica-symmetry approximation, the phase diagram is obtained for different valigs dhe
border of the ferromagnetic phase displays interesting behavior, depending on the vélye vath two
threshold valuegh{" andh{?): (i) a continuous line, foh,<h{; (ii) two pieces, one continuou&igh
temperaturesand another of the first-order tygéow temperatures connected at a tricritical point, fdmg
>h52) ; and(iii ) two continuous piecethigh and low temperaturand a first-order part in between, with two
tricritical points, forhgl)shos hgz). The stability of the replica-symmetric solution is analyzed. It is shown
that the higher-temperature tricritical point is always in a stable region of the phase diagram, whereas the
lower-temperature one is, most of the time, inside the unstable region. Along the first-order critical line, a small
gap is found between the borders associated with the instabilities of the replica-symmetric solution from either
side of the phase-coexistence region, i.e., these instability lines do not meet at the ferromagnetic frontier, as
usually happens in the case of second-order phase trans{i®t®363-651X98)07705-9

PACS numbes): 05.50+q, 64.60—i, 75.10.Nr, 75.50.Lk

[. INTRODUCTION agreeing that d,;<3 in such a way that there is a phase
transition in three dimensions, but not in two. Whether RSB
Disordered magnefd] have become one of the most ex- survives in real short-range spin glasses has turned into a
citing areas in magnetism from both theoretical and experipolemic, not yet resolvefdl3]. The rival theory is the droplet
mental points of view. Among many interesting systems, twamodel[14], based on domain-wall renormalization-group ar-
of them may be singled out as sources of remarkable contrgguments for spin glass¢$2,15. Contrary to RSB, the drop-
versies, namely, spin glasg&s3] and the ferromagnet in the let model describes the low-temperature phase of any short-
presence of a random fie[@,4]. range finite-dimensionalspin glass in terms of a single
Most of the spin-glass theory has been concentrated at thBermodynamic statétogether, of course, with its corre-
mean-field level, based on infinite-range-interaction modelssponding time rever$eThe droplet model goes through dif-
whose prototype is formulated for the Ising spin gld§G),  ficulties as the dimensionality increases, since one expects
the so-called Sherrington-KirkpatricdSK) model [5]. The the existence of a finite upper critical dimensitelieved to
solution of the SK model presents unusual properties, suche 6 for the 1ISG[16]) above which the mean-field picture
as the Almeida-Thoules@AT) line [6], which, in the pres- should become valid. It is very difficult to carry out numeri-
ence of an external uniform magnetic field, separates a higteal simulations in dimension 3, which is presumably close to
temperature region where the spin-glass order parameter ise lower critical dimension, due to thermalization difficul-
unique from a low-temperature one, defined in terms of ariies; as a consequence, no conclusive results concerning this
infinite number of order parameters, i.e., an order-parametarontrovery in three-dimensional systems are available. How-
function[7]. Within the replica-methofl2] terminology, the ever, in four dimensions the critical temperature is much
phase characterized by a single parameter is said to followigher, making thermalization easier; many works claim to
replica symmetry, whereas at low temperatures the instabihave observed some mean-field features in this th8e
ity of replica symmetry is corrected by the introduction of The random-field Ising modéRFIM), as introduced by
Parisi's order-parameter function, a procedure that is usuallimry and Ma[18], has concentrated much attention on the
denominated replica symmetry breakiiBSB). Such an revelation of its physical realization as a diluted Ising anti-
order-parameter function is directly related to a multiplicity ferromagnet in the presence of a uniform magnetic fiegj
of equilibrium states at low temperatures, which are orgaand that the static critical properties in these two systems
nized in a hierarchical structure, defining an ultrametricmay be the samg20]. Simple physical arguments due to
space[8]. Concerning short-range-interaction systems, arimry and Ma suggested that the lower critical dimension of
early controversy referred to the lower critical dimensthn  the RFIM, above which there exists a stable ferromagnetic
of the ISG. This question is by now completely settled, withstate at low temperatures, should 8eg=2; although that
numerical simulationg9], high-temperature series expan- point remained controversial for some time, rigorous results
sions[10], and renormalization-group metho@$1,12 all [21] showed that the assertion is indeed true. According to its
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mean-field theory, the nature of the phase transition dependschibit and discuss the phase diagrams. Finally, in Sec. IV
on the distribution associated with the magnetic field. In thewe present our conclusions.

Gaussian case, the phase transition is always continuous

[22], whereas for a symmetric bimodal distributiqfor Il. THE MODEL AND REPLICA FORMALISM

which the field assumes the valued, with equal probabili-
ties), the phase transition is continuous fgy small and high
temperatures, becoming first order for sufficiently large val-
ues ofhy and low temperature23]. In the latter case, the
critical frontier presents a tricritical point connecting the H=-2, J;SS-2 hS, 2.1
continuous and first-order pieces. Analogous to what hap- @) '

pens for spin glasses, the free-energy landscape at low tefyhereS = +1, withi=1,2, ... N, and the interactions are
peratures may be complicated, with some perturbative analynfinite-range-like, i.e., the sur;; applies to all distinct
sis, suggesting that the ordered phase may present RSB fghirs of spins. The coupling constarfts;} and the random

finite-dimensional system(24]. That makes the situation in fields {h;} are quenched variables, following independent
the short-range RFIM rather subtle, e.g., the numerical simuprobability distributions

lations suffer from thermalization problems, in such a way
that conclusive results about the nature of the phase transi- P(J--):(l) 172 exp{— l (J” ) ﬁ) 2} on
tion become difficult to obtain. For the three-dimensional L 2mwJ° 22\ N/ |’ '
RFIM, recent Monte Carlo simulations detect a jump in the
magnetization but no latent heat for both bimof2] and P(h;)=pd&(h;—hg)+(1—p)s(h;+hg). (2.3
Gaussian 26] distributions, whereas high-temperature series ) o o
expansion$27] and a zero-temperature scaling analjg®  For @ given realization of bonds and site fieldd(},{h;}),
find a continuous transition for both distributions. However, o€ has a corresponding free enefglyJj;},{h;}) such that
in four dimensions the same zero-temperature anajggls  (he average over the disordgr];, may be performed as
leads to a first-order phase transition in the bimodal case arfadependent integrals
a continuous one for a Gaussian distribution, in agreement [FUI ) n
with the mean-field predictions. A

Although they may present common properties, particu-
larly at large random fields, the ISG and RFIM have been - (ll_J[) [dJiiP(‘]ii)]H [dRiP(h) IR ({3} thi}).-
treated, most of the time, separately; a few works have con-
sidered the two systems togetH&9,30. However, many 2.4
systems in nature are properly described through a spin glass The usual procedure consists in applying the replica

in the presence of a random magnetic field. As examples ON® ethodl2] in order to get the free ener er Spin as
may mention the proton and deuteron glag8€s, which are (2l g gy persp

The SK model in the presence of an external random
magnetic field is defined in terms of the Hamiltoni®9]

mixtures of hydrogen-bonded ferroelectric and antiferroelec- 1

trics, considered as the electric counterparts of spin glasses. —Bf=lim N [In Z({J;;}.4hiPH Ton

On the other hand, many diluted antiferromagnets, whose N—e

prototype is FgZn, _,F,, due to large crystal-field anisotro- 1

pies, when submitted to an external uniform magnetic field =lim lim — ([Z"];,— 1), (2.5
become good experimental realizations of the REB] for Noe no NN '

large enough values of the concentratignasx decreases,

they behave like Ising spin glasses. In theZg_,F, case, whereZ" is the partition function oh copies of the system
for x=0.40 one gets a RFIM, whereas fe<0.24 it be- defined in Eq(2.1) and = 1/T (we work in unitskg=1).
comes an ISG. However, for intermediate concentration$tandard calculations lead to

(0.24<x=<0.40) one may have both behavi¢RFIM (ISG) (BI)? 1

for small (Iarg_e) magnetic field§ with a crossover between Bf=— B +1im = min g(m%,q®#), (2.6
them; that is clearly observed in measurements of 4 noo N

Fey 3:Zng sd> [32]. Obviously, such systems are expected to

be properly described through a model that is capable ofvhere

presenting both spin-glass and random-field characteristics;

the SK model under a Gaussian random fig@é] was able N vy (BY)? wpr 2
to present the crossover observed i £8ng gd>. 9(m*.q B)_T ; (m®)"+ 2 (;ﬁ) Che)
In this paper we study the SK model in the presence of a
bimodal random field; we show that this system presents a —p In Tr, exp(Hex)
first-order phase transition, depending on the magnitude of _
the random field. This model should be relevant for the de- —(1=p)In Tr, exp(Hey), (2.7a

scription of diluted antiferromagnets exhibiting first-order

phase transitions such as,Mg; _,Cl, [31]. In the next sec- HE=R] mes®+ ( BJ)2 aBgegh+ gh I
tion we define the model and, using the replica method, find = " A 0; (B9) (%;) q =P 0; '
its free-energy density and equations of state. In Sec. Il we (2.7b
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In the equations above, the sum indicesand 8 («,B o
=1,2,...n) are replica labels andl, g denote sums over q=f Dz tantf(BJIq"z+ Bhy), (2.160
distinct pairs of replicas.

The extrema of the functionag(m*,q*#) give us the which are identical to those of the SK model in the presence
equilibrium equations for the magnetization and spin-glasf a uniform magnetic fiel@i6]. Therefore, the AT line in the
order parameters, respectively, plane magnetic field versus temperature is independept of
and trivially analogous to the one far=1; such a line is

m*=p(S"). +(1-p)(S")-, (283 jhvariant under reversal of the field. Hence, in the present
af— n/ e (1— " problem,Jo,=0 does not lead to any novel behavior.
AP=p(S'F) + (1=pAS'T)-, (a2 B), (2.8 ForJy# 0 there is an AT line for any value @, given by

the solution of Eqs(2.11), (2.12), and(2.15. At low tem-
where( ). refer to thermal averages with respect to the “ef- peraturesly>J andJy>hy, this line is given by
fective Hamiltonians"H in Eq. (2.70.

If one assumes the replica-symme(BS) ansatZ5] T 41 [p F{ (Jo+ho)?
e = _=e o
mf=m Va, J 3 \/_ 2J
Jo—ho)?
q*’=q VY(ap), (2.9 +(1—p)exp{— %H (2.17

the free energy per spirEqg. (2.6)] and the equilibrium con-
ditions[Egs.(2.8)] become In the next section we shall consider the phase diagrams for

) p=3, Jo=0, and different values df.
J
pi=— (B) (1-q)%+ %m?

Ill. PHASE DIAGRAMS

As far as replica symmetry is concerned, the cgses
—IOJ Dz In(2 cosh¢™) are trivial since both magnetization and spin-glass param-
eters are nonzero; let us restrict ourselves now+os. In
_ this case the random field induces the paramgter such a
—(1—p)f Dz In(2 cosh¢™), (2.10 way that there is no spontaneous spin-glass order, like the
one found in the SK model, whereas one may still have a
N B phase transition associated with the magnetization. There-
mzpf Dz tanh¢ +(1—p)f Dztanh¢™, (211 fore, analogous to the RFIM, two phases are possible,
namely, the ferromagnetien+ 0, g+# 0) and the independent
N B (m=0, q#0) ones. In the RFIM this latter phase is usually
quf Dz tantf ¢ +(1—p)f Dz tantf ¢, denominated paramagnetic; for the present problem, within
(2.12  the RS approximation, we shall keep the nomenclature inde-
pendent, for reasons that will become clear soon.
where The critical frontier separating these two phases may be
. [ g |12 found by soIvin'g the equilibrium equgt'io(@.lD and(2.12);
J' Dz ..:f (_) dzexp(—z2/2)--- (2.13  inthe case of first-order phase transitions, we shall make use
| 27T of the free-energy per spirEq. (2.10] as well. Let us then

expand Eq(2.11) in powers ofm,
and

gi:BJ0m+ﬁJql/22i BhO (214) m:Al(q)m+A3(q)m3+A5(Q)m5+O(m7)l (31)

Although the spin-glass order paramef&q. (2.12)] is al-  Where the coefficients are given by
ways induced by the random field, it may still contribute to a
nontrivial behavior. The RS solutidiEq. (2.9)] becomes un- A1(d)=BIo[1—-p1(d)], (3.2a
stable below the Almeida-Thoule§8§] line, (,8 1)
0

As(q)=— [1-4pi(q)+3p2(q)], (3.2D

T 2
(3) =pf Dz sech §*+(1—p)f Dz sech ¢
(213 (g3 0)5
A = 2—17, + 1
If Jo=0 the integrals involvingg™ in (2.12 and (2.15 5(a)= [ p1(@)+30p2(a) ~15p5(q)],
may be easily transformed through the change of variables (3.20

z— —zin such a way that the AT line is obtained by solving
the equations

2
(;) = J Dz secH(BIq¥%z+ Bhy),  (2.163 p(Q)= f Dz tantt*(BIq*%z+ Bhy). (3.3
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FIG. 1. Typical phase diagrams of the Sherrington-Kirkpatrick model in the presence of a symmetric bimodal random field of magnitude
hg. For the border of the ferromagnetic phase, full lines represent continuous transitions, whereas the dashed ones stand for first-order phase
transitions. The black circles along such a border represent points where the coefficiete Eq.(3.6b) ] is zero. The ferromagnetic
critical frontier changes qualitatively for increasing valuesgf (a) completely continuougpb) continuous, except for the appearance of a
singularity (A;=0); (c) two tricritical points; andd) one of the tricritical points collapses with the zero-temperature axis. The lines AT1 and
AT2 define the regions of instability of the replica-symmetric solution.

The coefficients in Eqs(3.2) depend org [which depends

_ _ , (B0 [5—(BI°T
onm through Eq.2.12)]; expanding Eq(2.12 in powers of Az=— 6 1—(BJ)°T I (3.6
m,
(Bo)? 2 4 The critical frontier was determined using standard proce-
47%F 3 1-(BI)°T m+o(ms, (349 dures, as described below. ’ P
(i) For continuous phase transitioA3=1 andA3<0; a
with typical case is shown in Fig.().
(i) A first-order phase transition occurs whenever
['=1-4p1(qo) +3p2(qo), (35 =1 andA}>0; the proper critical frontier was found in this

case through a Maxwell construction, i.e., by equating the
free energies of the two phases. Typical cases are exhibited
in Figs. Xc), 1(d) and 2(dashed lines

(iii) When both types of phase transitions are present, the
continuous and first-order critical frontiers meet at a tricriti-
cal point[33], which defines the limit of validity of the series
expansions; beyond the tricritical point the magnetization is

whereqg corresponds to the solution of EQ.12 for m=0.
Substituting Eq. (3.4 into Eg. (3.1), one gets the
m-independent coefficients of the power expansion; we will
be particularly interested in the lowest-order ones

A1=A1(qo), (3.63
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3.07 We investigated how the above-mentioned critical frontier
hy/J=1.5 evolves along the zero-temperature axis;TatO the spin-
3 5 glass order parameter is triviad|€ 1), whereas the free en-
) ergy and magnetization become, respectively,
201 o Jo o ho| [Jomtho) [ Iom—ho
/3 | ; 2 2 W2 W2
1.57 i ;
. J ( ;{ (Jom+ ho)z}+ F{ (Jom_ho)zn
: , : ——— X ——=—|texg ———=— |,
1.0 ; V27 23 23
P : (3.79
0.57 N
ATI S/G (FATZ 1 f Jom+hg i f( Jom—hg 378
Y ; m= - efff ——— | + - erff ———|. .
0.0 , . = 25\ "2 )27\ ;e
0.0 1.0 2.0 3.0 4.0
Jo/J Using a similar procedure as the one for finite temperatures,

one may expand Ed3.7b),

FIG. 2. Phase diagram of the Sherrington-Kirkpatrick model in
the presence of a symmetric bimodal random field of magnitude m=a;m-+azm*+asm>+0(m’), (3.9
ho=1.53. The phases and lines follow the same nomenclature used
in Fig. 1. The inset is an amplification of the low-temperature rect-Where
angular region withT/J=0.0—0.4 andJ,/J=2.5—-4.0. The gray 5
region in the inset represents the phase coexistence, characteristic of . \/EJO hg
the first-order critical frontier. The line AT1 is valid up to the right a= N, - 232)
end limit of the phase coexistence, whereas AT2 is valid up to the

(3.9a

left end limit of this region. Therefore, AT1 and AT2 do not meet at 1 Jo hS
the ferromagnetic critical frontier. as=g (7) (—2 1) exr{ - Eg) , (3.9
discontinuous. The location of such a point is determined by
settingA;=Aj}=0, with the conditionA,<0 satisfied. 1 \F Jo\ 3/ h hg

The present problem reveals a curious behavior. For a =755\ (j) <—4_ 32 7+3 exp( 232)-
small range of field magnitudes, the coefficiéxdt changes (3.99

sign twice: It is negative at high, becomes positive for inter-

mediate, and negative again at low temperatures. In such for h,/J<1 one gets a continuous critical frontier given by
case, the critical frontier is composed of two continuous

pieces(computed throughA;=1), interpolated by a first- JO
order part(computed by equating the free energidsfining ex 2J2 , (3.10
two tricritical points; this occurs fohy/J=<1, as shown in
Fig. 1(c).
The finite-temperature phase diagrams of the SK model in jvhich terminates at the tricritical point
the presence of a symmetric bimodal random field are exhib- h J s
ited in Figs. 1 and 2 for increasing valuestgf. One notices O_ 1, R 2.0664 (3.1
that the part of the phase diagram allocated to the ferromag- J J

netic phase gets reduced hg increases. One finds two
threshold values di (h{" andh{?), at which the ferromag-
netic critical frontier changes qualitatively. Fog<h{", the
frontier is continuous. Two ftricritical points are present in
the rangeh{’<h,<h{?; these points move in opposite
senses in the temperature scale, for increasing valukg,of
in such a way that the lower-temperature one collapses wit|

Lhii?zr)o;empt_aratur? axis f(br‘?__ho [_see F|g._ w)]. For sult that it should approach the asymptdge=h,. The zero-
o>hg ere is a single tngrmcal p0|)nt at finite temp.era- temperature phase diagram is exhibited in Fig. 3.

tures. We have found numerically ttaf)~0.9573); at this As mentioned before, the parametemay still contribute

value, the coefficiend\; is negative along the whole critical to a nontrivial behavior; this effect is directly related to a

frontier, becoming zero fof* ~0.3582 andJ;~1.9804,  stability analysis of the RS solutidi6]. Usually two criteria

corresponding to a singularitithe two tricritical points are are employed for the identification of a spin-glass phase in

superposed as represented by the black circle in Figh)l infinite-range-interaction models, as we mention below.

The second threshold value was found analyticaliff’ (a) Within the RS approximation, the parametpmay

=J, through a zero-temperature analysis, which will be dis-become nonzero below a certain temperature, signaling the

cussed next. onset of a spin-glass phase.

This tricritical point corresponds to the zero-temperature col-
lapse shown in Fig. (@l); one may easily see that the condi-
tion as<O0 is satisfied by the coordinat€3.11). Beyond the
tricritical point (hg/J>1), the transition becomes first order;
the corresponding critical frontier may be obtained numeri-
ally from Eq.(3.79 by imposingf(m#0)=f(m=0), al-
though in the limitdy/J,hg/J>1 one has the analytical re-
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L5 - g: RSB), ferromagnetic(F) (m#0; g: RS, and mixed
ferromagnetic F') (m#0; g: RSB).
SG For smaller values ofi, [e.g., Fig. 1a)], one clearly no-
o tices the effect usually denoted “reentrance:” By lowering
10 . the temperature in the neighborhood of the ferromagnetic

border, one comes from a highly disordered phéReto
ordered phase& andF’) and then to a less-ordered state

hy/J , (SG). This effect is attenuated for increasing valueshgf
F similarly to what happens for the SK model in the presence
0.5 A of a Gaussian random field by increasing its distribution
width [29].

Below the Almeida-Thouless line@T1 and AT2, the
RS solution is unstable and a RSB formalism is required,;
certainly, some changes may occur in a more general type of

0.0 . : . - ) solution, as we discuss below.
1.0 2.0 3.0 4.0 (i) The frontier between th8G andF’ phases is expected
Jo/J to become a vertical straight ling.e., no reentrange in

, , analogy to what happens for the SK model, according to the
FIG. 3. Zero-temperature phase diagram of the ShemngtonParisi-TouIouse hypothesi84]. RSB may eliminate the re-
Kirkpatrick model in the presence of a symmetric bimodal randomentrance effects for small values bf, (continuous phase
field. transition; on the other hand, a RSB study of this critical
frontier in the case of a first-order phase transition is a diffi-
(b) The AT stability analysis normally splits phase dia- cult task. However, we expect that the shape of the ferromag-
grams into regions throughout which the RS solution is ei-netic border forhy/J greater than or of the order of unity
ther stable or unstable. The instability of replica symmetry ifFigs. Xb)—-1(d) and 2 will not change substantially. For
usually cured by the introduction of an order-parameter funcsuch reasons, the zero-temperature phase diagram exhibited
tion, a procedure known as replica symmetry breakifiglt in Fig. 3 will presumably be modified fan, small, but its
is very common to associate a spin-glass state with RSB. discrepancies should decrease for increasing valués .of
Normally, for systems where the RS paramef&recomes (i) The low-temperature tricritical point foh{’<h,
nonzero, as mentioned i@), the AT instability occurs to- ghg) is, most of the time, inside the unstable reg[eng.,
gether; in such cases, criteri@ and (b) coincide in the  Fig 1(c)]. Whether this tricritical point is an artifact of RS is
identification of the spin-glass phase, as happens for the SK question that deserves further investigation.
model in the absence of a field. However, due to external | the case of continuous phase transitions, the two AT
parameters, a given system may present an induced spifines (AT1 and AT2 meet at a multicritical point, in the
glass order parameter and an AT-like instability. In this caseferromagnetic border, as shown in Figga)land 1b). How-
the AT line defines two regions in the phase diagram angyer, due to the phase-coexistence region in the case of first-
criterion (b) is employed: In one of them, the spin-glass or-grder phase transitions, the line ATAT2) goes as far as the
der parameter is trivially induced and obeys R8s region  ignt (left) end limit of the phase coexistence, as exhibited in
is normally denominated a paramagnetic phiagoughout  the gray region in the inset of Fig. 2; as a consequence of
the other one, the spin-glass order parameter is highly nonpjs “these lineslo not meett a point of the ferromagnetic
trivial, defined according to a RSB proceduthis region is  porder. Since an AT line signals the instability of the RS
usually called a spin-glass phasés an example of this go|ytion and does not correspond to a genuine phase transi-
case, one may mention the SK model in the presence of afon we are not aware of any kind of “Maxwell construc-
external magnetic field. N _ tion” that could be used in this case. Therefore, the lines
In the present problem, the AT stability analysis may beaT1 and AT2 herein exhibited merely represent the solu-
carried either to the independent phase=(0) or to the {igns of Egs.(2.1D), (2.12, and(2.15 for p=4.
ferromagnetic (1#0) one. In the former case, the AT lineis  The RS treatment is appropriate in the region of stability
given by the solution of Eqg2.16 and due to itsly inde-  of such solution; hence the border of the ferromagnetic phase
pendence, one gets horizontal straight lit@%1), as shown for temperatures above the lines AT1 and AT2 will not
in FlgS](a)—l(d) and 2. In the Iatter, the AT line is qbtainEd Change under a RSB formalism. In particu|ar' the higher-
by solving Egs.(2.11), (2.12, and(2.19 for p=3; in the  temperature tricritical point, together with a part of the first-
low-temperature regime one gets the exponential decays @fder critical frontier, will persist in more general treatments;

Eq. (2.17, whereas for intermediate temperatures, suchhis tricritical point is probably reminiscent of the one found
equations are solved numerically. The AT lines inside then the bimodal RFIM[23].

ferromagnetic regioiAT2) are exhibited in Figs. (&)—1(d)
and 2.

Herein we shall adopt criteriofb) described above for
the identification of the paramagnetic and spin-glass phases; We have studied the Sherrington-Kirkpatrick spin glass in
in a similar way, the ferromagnetic phase will be split in two the presence of a bimodal random field, which can assume
parts. The phases exhibited in Figs. 1-3 are identified athe valuesth, at each site. We have analyzed the phase
paramagneti¢P) (m=0; q: RY), spin-glasySG) (m=0; diagram for the case of a symmetric field distribution, within

IV. CONCLUSION
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the replica-symmetry approximation, for which, the spin-and should not change under a more general solution; this
glass parameter is always induced by the field, whereas thmoint is probably reminiscent of the one found for the bimo-
magnetization becomes nonzero, defining a ferromagnetidal RFIM. On the other hand, the lower-temperature tricriti-
phase. By increasinly, we have verified that the part of the cal point is, most of the time, inside the unstable region and
phase diagram allocated to the ferromagnetic phase dés existence may be an artifact of the replica-symmetry an-
creases; in addition to that, we have found two thresholdatz.

values (h{" and h{?)) at which the ferromagnetic critcal ~ Due to the first-order phase transition, the limits of stabil-
frontier changes qualitatively: It is completely continuous fority of the replica-symmetric solution, from either side of the
ho<h{" and presents two tricritical points fon{l'<h, Phase-coexistence region, do not meet at the ferroma'g.netic
<h{ or a single tricritical point fohy>h{? . By increasing border, as usually happens for continuous phase transitions.
h in the rangehgl)shos h(()z), we have noticed that the V\/_thh f_eatures of the present m_ean-flelo_i picture will pre-
temperatures corresponding to the two tricritical pointsdomlnate In & short-range Ising spin glass in the presence of

evolve in opposite senses, i.e., one point Moves up Wheregisbimodal random field turns out to be a question directly
the other one goes down in the temperature scale, in Suchrglated o the survival of ”?ea”'f'e'd cha.racterl_stlcs in the
that forhneh® the | 4 ture tricritical point réspective short-range versions of the Ising spin glass and
Wahy a Or'tk? th 0 et ower etmpera.ure ricntical point - andom-field model, treated separately. We are not aware of
COV?/pSﬁS Wi h € Ztirot_ el?;pera;ﬂrhe axis. | i any experimental observations of the results herein reported.
€ have shown that afthough the spin-glass parameter IIﬁowever, the diluted antiferromagnet, My, _,Cl, seems to
always nonzero, it may lead to a nontrivial behavior; the

. . ; ) e o ndidate since it h resent viden f
stability analysis of the replica-symmetric solution |dentn‘|esbe a good candidate since it has presented evidence of a

. th hout which h lution b i bIfirst-order phase transitiof81]; we believe that, for conve-
regions throughout which such a solution beécomes unsta ?fiently chosen concentrations, some of the above results may
Due to this stability analysis, the phase diagram appears

; ears o ohserved.
be composed of four phases: two with zero magnetization v

[paramagneti¢spin glasg| and two with nonzero magneti-

zation [ferro_m_agnetic_(mixeq ferromagnetbd., defined in ACKNOWLEDGMENTS
terms of a trivial(nontrivial), i.e., RS(RSB) spin-glass order
parameter. We acknowledge Marcia Barbosa for fruitful conversa-
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